Journal Publications

Full citation data: Pubmed, Web of Science, Google Scholar

† equal contribution | ‡ co-corresponding author

    1. Mac QD, Xu C, Bowen JR, Sivakumar A, Phuengkham H, Su FY, Stentz SZ, Sim H, Harris AM, Li TT, Qiu P, and Kwong GA, “Activity-based urinary biomarkers of response and resistance to checkpoint blockade immunotherapy” under review, bioRxiv 2020.12.10.420265 preprint
    2. Cazanave SC, Warren AD, Pacula M, Touti F, Zagorska A, Gural N, Huang EK, Sherman S, Cheema M, Ibarra S, Serer A, Bates J, Billin AN, Liles JT, Budas GR, Breckenridge DG, Tiniakos D, Ratziu V, Daly AK, Govaere O, Anstee QM, Gelrud L, Luther J, Chung RT, Corey KE, Winckler W, Bhatia SN, and Kwong GA, “Noninvasive urinary monitoring of non-alcoholic steatohepatitis by mass barcoded activity-based sensors” Sci. Transl. Med. (2021), in press. 
    3. Holt BA, Tuttle M, Xu Y, Su M, Roise JJ, Wang X, Murthy N and Kwong GA, “Dimensionless parameter predicts bacterial prodrug success” under review.
    4. Miller IC†, Zamat A†, Sun LK, Phuengkham H, Harris AM, Gamboa L, Yang J, Murad JP, Priceman SJ and Kwong GA, “Enhanced intratumoural activity of CAR T cells engineered to produce immunomodulators under photothermal control” Nat. Biomed. Eng. (2021). [DOI: 10.1038/s41551-021-00781-2]
    5. Kwong GA‡, Ghosh S, Gamboa L, Patriotis C, Srivastava S‡, and Bhatia SN‡, “Synthetic Biomarkers: A 21st century path to early cancer detection” Nat. Rev. Cancer 21, 655–668 (2021). [DOI: 10.1038/s41568-021-00389-3]
    6. Bazrafshan A, Kyriazi ME, Holt BA, Deng W, Piranej S, Su H, Hu Y, El-Sagheer A, Brown T, Kwong GA, Kanaras A, and Salaita K, “DNA gold nanoparticle motors demonstrate processive motion with bursts of speed up to 50 nm per second” ACS Nano 15(5), 8427–8438 (2021). [DOI: 10.1021/acsnano.0c10658]
    7. Su FY†, Mac QD†, Sivakumar A, and Kwong GA, “Interfacing biomaterials with synthetic T cell immunity” Adv. Healthcare Mater. 2100157 (2021). [DOI: 10.1002/adhm.202100157
    8. Dahotre SN†, Romanov A†, Su FY, and Kwong GA, “Synthetic antigen-presenting cells for adoptive T cell therapy” Adv. Therap. 2100034 (2021). [DOI: 10.1002/adtp.202100034]
    1. Turner TC†, Sok MCP†, Hymel LA†, Pittman F, York WY, Mac QD, Vishna S, Lim HS, Kwong GA, Qiu P, and Botchwey EA, “Harnessing lipid signaling pathways to target specialized pro-angiogenic neutrophil subsets for regenerative immunotherapy” Sci. Adv. 6(44), eaba7702 (2020). [DOI: 10.1126/sciadv.aba7702]
    2. Holt BA and Kwong GA, “Protease circuits for processing biological information” Nat. Commun. 11, 5021 (2020). [DOI: 10.1038/s41467-020-18840-8]

    Summary | Biological circuits engineered to interface with living systems will enable new applications for programmable immune therapies and diagnostics. In this study, we explored how treating proteases as ‘biological bits’ could be used to design cell-free biocircuits with the capacity to perform digital operations such as analog-to-digital conversion for drug delivery, as well as analog operations that implement ‘fuzzy logic’ to solve mathematical problems. 

    Press Coverage | Georgia Tech Research Horizons “‘Programmable Medicine’ is the goal for new bio-circuitry research” | | Mirage News | TMR Blog
    1. Gamboa L, Zamat A and Kwong GA, “Synthetic immunity by remote control” Theranostics 10(8): 3652–3667 (2020). [DOI: 10.7150/thno.41305]
    2. Kwong GA, “Macrophage sensors for early cancer detection” Clin. Chem. 66(2), 268–270 (2020). [DOI: 10.1093/clinchem/hvz017]
    3. Tadros AR, Romanyuk A, Miller IC, Santiago A, Noel RK, O’Farrell L, Kwong GA and Prausnitz MR, “STAR particles for enhanced topical drug and vaccine delivery” Nat. Med. 26, 341–347 (2020). [DOI:10.1038/s41591-020-0787-6]
    4. Gamboa L, Phung EV, Li H, Meyers JP, Miller IC and Kwong GA, “Heat-triggered remote control of CRISPR-dCas9 for tunable transcriptional modulation” ACS Chem. Biol. 15(2), 533–542 (2020). [DOI: 10.1021/acschembio.9b01005]
    Summary | CRISPR-based approaches have achieved wide success in modulating gene activity to control cell function and are potential tools for clinical therapies. However, the lack of precise methods to deliver and control Cas protein expression in vivo remains a critical hurdle. Here we develop a tunable, heat-triggered platform that regulates mammalian cell transcription by remote control of dCas9 transcriptional modulators.   

    1. Dudani JS, Buss CG, Akana RTK, Kwong GA and Bhatia SN, “Sustained-release synthetic biomarkers for monitoring thrombosis and inflammation using point-of-care compatible readouts” Adv. Funct. Mater. 26(17), 2919–2928 (2016). [DOI: 10.1002/adfm.201505142]
    1. Dudani JS, Jain PK, Kwong GA, Stevens KR and Bhatia SN, “Photoactivated spatiotemporally-responsive nanosensors of in vivo protease activity” ACS Nano 9(12), 11708–11717 (2015). [DOI: 10.1021/acsnano.5b05946]
    2. Kwong GA, Dudani JS, Carrodeguas E, Mazumdar EV, Zekavat MS and Bhatia SN, “Mathematical framework for activity-based cancer biomarkers” Proc. Natl. Acad. Sci. USA 112(41), 12627–12632 (2015). [DOI: 10.1073/pnas.1506925112]
    3. Danino T, Prindle AKwong GA, Skalak M, Li H, Allen K, Hasty J and Bhatia SN, “Programmable probiotics for detection of cancer in urine” Sci. Transl. Med. 7(289), 289ra84 (2015). [DOI: 10.1126/scitranslmed.aaa3519]